
VISION OF THE INSTITUTION

To ignite the minds of the students through academic excellence so as to bring about social

transformation and prosperity.

MISSION OF THE INSTITUTION

1. To expand the frontiers of knowledge through Quality Education.

2. To provide valued added Research and Development.

3. To embody a spirit of excellence in Teaching, Creativity, Scholarship and Outreach.

4. To provide a platform for synergy of Academy, Industry and Community.

5. To inculcate high standards of Ethical and Professional Behavior.

VISION OF CSE DEPARTMENT

To build a strong teaching-learning base with a flair for innovation and research that responds to

the dynamic needs of the software industry and the society.

MISSION OF CSE DEPARTMENT

1. To provide strong foundation both in theory and applications of Computer Science &

Engineering, so as to solve real-world problems

2. To empower students with state-of-art knowledge and up to date technological skills, making

them globally competent

3. To promote research, innovation and entrepreneurship with focus on industry and social

outreach

4. To foster civic minded leadership with ethics and values among students

PROGRAM EDUCATIONAL OBJECTIVES OF CSE DEPARTMENT

1. Graduates will have knowledge of mathematics, science, engineering fundamentals, and

in-depth studies in Computer Science Engineering, and will be able to apply them for

formulating, analysing and solving real world problems.

2. Graduates will succeed in earning coveted entry level positions in leading Computer

Software and Hardware Firms in India and abroad.

3. Graduates will succeed in the pursuit of advanced degrees and research in engineering or

other fields and will have skills for continued, independent, lifelong learning and

professional development throughout life.

4. Graduates will have good communication skills, leadership qualities, ethical values and

will be able to work in teams with due attention to their social responsibilities.

PROGRAM OUTCOMES OF CSE DEPARTMENT

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of mathematics,

natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and

design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data, and synthesis of the

information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities

with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the

professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for

sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms

of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in

diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and write

effective reports and design documentation, make effective presentations, and give and receive

clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES OF CSE DEPARTMENT

1. An ability to demonstrate basic knowledge in databases, programming languages and

algorithm analysis in the development of software applications.

2. An ability to design and develop projects using open source tools and efficient data

structures.

COMPUTER GRAPHICS

OBJECTIVES:

• To develop, design and implement two and three dimensional graphical structures

• To enable students to acquire knowledge Multimedia compression and animations

• To learn Creation, Management and Transmission of Multimedia objects.

UNIT-I:

2D Primitives Output primitives – Line, Circle and Ellipse drawing algorithms - Attributes of
output primitives – Two dimensional Geometric transformations - Two dimensional viewing –
Line, Polygon, Curve and Text clipping algorithms

UNIT-II:

3D Concepts Parallel and Perspective projections - Three dimensional object representation –

Polygons, Curved lines, Splines, Quadric Surfaces, - Visualization of data sets -

3Dtransformations – Viewing -Visible surface identification.

UNIT-III:

Graphics ProgrammingColor Models – RGB, YIQ, CMY, HSV – Animations – General

Computer Animation, Raster, Keyframe - Graphics programming using OPENGL – Basic

graphics primitives –Drawing three dimensional objects - Drawing three dimensional scenes

UNIT- IV:

Rendering Introduction to Shading models – Flat and Smooth shading – Adding texture to faces

–Adding shadows of objects – Building a camera in a program – Creating shaded objects–

Rendering texture – Drawing Shadows.

UNIT- V:

FractalsFractals and Self similarity – Peano curves – Creating image by iterated functions –

Mandelbrot sets – Julia Sets – Random Fractals

II Year - I Semester
L T P C

4 0 0 3

UNIT- VI:

Overview of Ray Tracing Intersecting rays with other primitives – Adding Surface texture –

Reflections andTransparency – Boolean operations on Objects.

OUTCOMES:

• Know and be able to describe the general software architecture of programs that use 3D

computer graphics.

• Know and be able to discuss hardware system architecture for computer graphics. This

Includes, but is not limited to: graphics pipeline, frame buffers, and graphic

accelerators/co-processors.

• Know and be able to select among models for lighting/shading: Color, ambient light;

distant and light with sources; Phong reflection model; and shading (flat, smooth,

Gourand, Phong).

TEXT BOOKS:

1. Donald Hearn, Pauline Baker, Computer Graphics – C Version, second edition Pearson

Education,2004.

2. F.S. Hill, Computer Graphics using OPENGL, Second edition, Pearson Education,

2003.

REFERENCE BOOKS:

1. James D. Foley, Andries Van Dam, Steven K. Feiner, John F. Hughes, Computer

Graphics- Principles and practice, Second Edition in C, Pearson Education, 2007.

DIGITAL LOGIC DESIGN

OBJECTIVE:

• To introduce the basic tools for design with combinational and sequential digital logic
and state machines.

• To learn simple digital circuits in preparation for computer engineering.

UNIT- I: Digital Systems and Binary Numbers
Digital Systems, Binary Numbers, Binary Numbers, Octal and Hexadecimal Numbers,

Complements of Numbers, Complements of Numbers, Signed Binary Numbers,Arithmetic

addition and subtraction

UNIT -II: Concept of Boolean algebra

Basic Theorems and Properties of Boolean algebra, Boolean Functions, Canonical and Standard

Forms, Minterms and Maxterms,

UNIT- III: Gate level Minimization

Map Method, Two-Variable K-Map, Three-Variable K-Map, Four Variable K-Maps. Products of

Sum Simplification, Sum of Products Simplification, Don’t – Care Conditions, NAND and NOR

Implementation, Exclusive‐OR Function

UNIT- IV:Combinational Logic

Introduction, Analysis Procedure, Design Procedure, Binary Adder–Subtractor, Decimal Adder,

Binary Multiplier, Decoders, Encoders, Multiplexers, HDL Models of Combinational Circuits

UNIT- V: Synchronous Sequential Logic

Introduction to Sequential Circuits, Storage Elements: Latches, Storage Elements: Flip‐Flops,

Analysis of Clocked Sequential Circuits, Mealy and Moore Models of Finite State Machines

UNIT -VI: Registers and Counters

Registers, Shift Registers, Ripple Counters, Synchronous Counters, Ring Counter, Johnson

Counter, Ripple Counter

II Year - I Semester
L T P C

4 0 0 3

OUTCOMES:

A student who successfully fulfills the course requirements will have demonstrated:

• An ability to define different number systems, binary addition and subtraction, 2’s

complement representation and operations with this representation.

• An ability to understand the different switching algebra theorems and apply them for

logic functions.

• An ability to define the Karnaugh map for a few variables and perform an algorithmic

reduction of logic functions.

• An ability to define the other minimization methods for any number of variables

Variable Entered Mapping (VEM) and Quine-MeCluskey (QM) Techniques and perform

an algorithmic reduction of logic functions.

TEXT BOOKS:

1. Digital Design, 5/e, M.Morris Mano, Michael D Ciletti, PEA.
2. Fundamentals of Logic Design, 5/e, Roth, Cengage.

REFERENCE BOOKS:

1. Digital Logic and Computer Design, M.Morris Mano, PEA.
2. Digital Logic Design, Leach, Malvino, Saha, TMH.
3. Modern Digital Electronics, R.P. Jain, TMH.

DATA STRUCTURES THROUGH C++

OBJECTIVES:

• To be familiar with basic techniques of object oriented principles and exception handling

using C++

• To be familiar with the concepts like Inheritance, Polymorphism

• Solve problems using data structures such as linear lists, stacks, queues, hash tables

• Be familiar with advanced data structures such as balanced search trees, AVLTrees, and

B Trees.

UNIT-I: ARRAYS

Abstract Data Types and the C++ Class, An Introduction to C++ Class- Data Abstraction and
Encapsulation in C++- Declaring Class Objects and Invoking Member Functions- Special Class
Operations- Miscellaneous Topics- ADTs and C++Classes, The Array as an Abstract Data Type,
The Polynomial Abstract Data type- Polynomial Representation- Polynomial Addition. Spares
Matrices,Introduction- Sparse Matrix Representation- Transposing a Matrix- Matrix
Multiplication, Representation of Arrays.

UNIT-II: STACKS AND QUEUES

Templates in C++, Template Functions- Using Templates to Represent Container Classes, The
Stack Abstract Data Type, The Queue Abstract Data Type, Subtyping and Inheritance in C++,
Evaluation of Expressions, Expression- Postfix Notation- Infix to Postfix.

UNIT-III: LINKED LISTS

Single Linked List and Chains, Representing Chains in C++, Defining a Node in C++- Designing
a Chain Class in C++- Pointer manipulation in C++- Chain Manipulation Operations, The
Template Class Chain, Implementing Chains with Templates- Chain Iterators- Chain Operations-
Reusing a Class, Circular Lists, Available Space Lists, Linked Stacks and Queues, Polynomials,
Polynomial Representation- Adding Polynomials- Circular List Representation of Polynomials,
Equivalence Classes, Sparse Matrices, Sparse Matrix Representation- Sparse Matrix Input-
Deleting a Sparse Matrix, Doubly Linked Lists, Generalized Lists, Representation of Generalized
Lists- Recursive Algorithms for Lists- Reference Counts, Shared and Recursive Lists

UNIT-IV: TREES

Introduction, Terminology, Representation of Trees, Binary Trees, The Abstract Data Type,
Properties of Binary Tress, Binary Tree Representations, Binary Tree Traversal and Tree
Iterators, Introduction, Inorder Traversal Preorder Traversal, Postorder Traversal, Thread Binary
Trees, Threads, Inorder Traversal of a Threaded Binary Tree, Inserting a Node into a Threaded
Binary Tree, Heaps, Priority Queues, Definition of a Max Heap, Insertion into a Max Heap,
Deletion from a Max Heap, Binary Search Trees, Definition, Searching a Binary Search Tree,
Insertion into a Binary Search Tree, Deletion from a Binary Search Tree, Height of Binary
Search Tree.

II Year - I Semester
L T P C

4 0 0 3

UNIT-V: GRAPHS

The Graph Abstract Data Type, Introduction, Definition, Graph Representation, Elementary

Graph Operation, Depth First Search, Breadth First Search, Connected Components, Spanning

Trees, Biconnected Components, Minimum Cost Spanning Trees, Kruskal S Algorithm, Prim s

Algorithm Sollin’ s Algorithm, Shortest Paths and Transitive Closure, Single Source/All

Destination: Nonnegative Edge Cost, Single Source/All Destination: General Weights, All-Pairs

Shortest Path, Transitive Closure.

UNIT-VI: SORTING
Insertion Sort, Quick Sort, Merge Sort Merging, Iterative Merge Sort, Recursive Merge Sort,
Heap Sort.

OUTCOMES:

• Distinguish between procedures and object oriented programming.

• Apply advanced data structure strategies for exploring complex data structures.

• Compare and contrast various data structures and design techniques in the area of

 Performance.

• Implement data structure algorithms through C++. • Incorporate data structures into the

 applications such as binary search trees, AVL and B Trees

• Implement all data structures like stacks, queues, trees, lists and graphs and compare their

Performance and trade offs

TEXT BOOKS:

1. Data structures, Algorithms and Applications in C++, S.Sahni, University Press (India)

 Pvt.Ltd, 2nd edition, Universities Press, Pvt. Ltd.

2. Data structures and Algorithm Analysis in C++, Mark Allen Weiss, Pearson Education. Ltd.,

 Second Edition.

3. Data structures and Algorithms in C++, Michael T.Goodrich, R.Tamassia and .Mount, Wiley

 student edition, John Wiley and Sons.

REFERENCE BOOKS:

1. Data structures and algorithms in C++, 3rd Edition, Adam Drozdek, Thomson

2. Data structures using C and C++, Langsam, Augenstein and Tanenbaum, PHI.

3. Problem solving with C++, The OOP, Fourth edition, W.Savitch, Pearson education.

MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE

OBJECTIVES:

• To introduce the students to the topics and techniques of discrete methods and

combinatorial reasoning.

• To introduce a wide variety of applications. The algorithmic approach to the solution of

problems is fundamental in discrete mathematics, and this approach reinforces the close

ties between this discipline and the area of computer science.

UNIT -I:

Mathematical Logic: Propositional Calculus: Statements and Notations, Connectives, Well

Formed Formulas, Truth Tables, Tautologies, Equivalence of Formulas, Duality Law,

Tautological Implications, Normal Forms, Theory of Inference for Statement Calculus,

Consistency of Premises, Indirect Method of Proof. Predicate Calculus:Predicative Logic,

Statement Functions, Variables and Quantifiers, Free and Bound Variables, Inference Theory for

Predicate Calculus.

UNIT -II:

Set Theory: Introduction, Operations on Binary Sets, Principle of Inclusion and Exclusion,

Relations: Properties of Binary Relations, Relation Matrix and Digraph, Operations on Relations,

Partition and Covering, Transitive Closure, Equivalence, Compatibility and Partial Ordering

Relations, Hasse Diagrams, Functions: Bijective Functions, Composition of Functions, Inverse

Functions, Permutation Functions, Recursive Functions, Lattice and its Properties.

UNIT- III:

Algebraic Structures and Number Theory: Algebraic Structures:Algebraic Systems,

Examples, General Properties, Semi Groups and Monoids, Homomorphism of Semi Groups and

Monoids, Group, Subgroup, Abelian Group, Homomorphism, Isomorphism, Number

Theory:Properties of Integers, Division Theorem, The Greatest Common Divisor, Euclidean

Algorithm, Least Common Multiple, Testing for Prime Numbers, The Fundamental Theorem of

Arithmetic, Modular Arithmetic (Fermat’s Theorem and Euler’s Theorem)

UNIT -IV:

Combinatorics: Basic of Counting, Permutations, Permutations with Repetitions, Circular

Permutations, Restricted Permutations, Combinations, Restricted Combinations, Generating

Functions of Permutations and Combinations, Binomial and Multinomial Coefficients, Binomial

and Multinomial Theorems, The Principles of Inclusion–Exclusion, Pigeonhole Principle and its

Application.

II Year - I Semester
L T P C

4 0 0 3

UNIT -V:

Recurrence Relations: Generating Functions, Function of Sequences, Partial Fractions,

Calculating Coefficient of Generating Functions, Recurrence Relations, Formulation as

Recurrence Relations, Solving Recurrence Relations by Substitution and Generating Functions,

Method of Characteristic Roots, Solving Inhomogeneous Recurrence Relations

UNIT -VI:

Graph Theory: Basic Concepts of Graphs, Sub graphs, Matrix Representation of Graphs:

Adjacency Matrices, Incidence Matrices, Isomorphic Graphs, Paths and Circuits, Eulerian and

Hamiltonian Graphs, Multigraphs, Planar Graphs, Euler’s Formula, Graph Colouring and

Covering, Chromatic Number, Spanning Trees, Algorithms for Spanning Trees (Problems Only

and Theorems without Proofs).

OUTCOMES:

• Student will be able to demonstrate skills in solving mathematical problems

• Student will be able to comprehend mathematical principles and logic

• Student will be able to demonstrate knowledge of mathematical modeling and
proficiency in using mathematical software

• Student will be able to manipulate and analyze data numerically and/or graphically using
appropriate Software

• Student will be able to communicate effectively mathematical ideas/results verbally or in
writing

TEXT BOOKS:

1.Discrete Mathematical Structures with Applications to Computer Science, J. P. Tremblay

and P. Manohar, Tata McGraw Hill.

2. Elements of Discrete Mathematics-A Computer Oriented Approach, C. L. Liu and D. P.

Mohapatra, 3rdEdition, Tata McGraw Hill.

3. Discrete Mathematics and its Applications with Combinatorics and Graph Theory, K. H.

Rosen, 7th Edition, Tata McGraw Hill.

REFERENCE BOOKS:

1. Discrete Mathematics for Computer Scientists and Mathematicians, J. L. Mott, A. Kandel,

T.P. Baker, 2nd Edition, Prentice Hall of India.

2. Discrete Mathematical Structures, BernandKolman, Robert C. Busby, Sharon Cutler

Ross, PHI.

3. Discrete Mathematics, S. K. Chakraborthy and B.K. Sarkar, Oxford, 2011.

PYTHON PROGRAMMING

OBJECTIVES:

• Introduction to Scripting Language

• Exposure to various problems solving approaches of computer science

UNIT – I:

Introduction:History of Python, Need of Python Programming, Applications Basics of Python

Programming Using the REPL(Shell), Running Python Scripts, Variables, Assignment,

Keywords, Input-Output, Indentation.

UNIT – II:

Types, Operators and Expressions: Types - Integers, Strings, Booleans; Operators- Arithmetic

Operators, Comparison (Relational) Operators, Assignment Operators, Logical Operators,

Bitwise Operators, Membership Operators, Identity Operators, Expressions and order of

evaluations Control Flow- if, if-elif-else, for, while, break, continue, pass

UNIT – III:

Data Structures Lists - Operations, Slicing, Methods; Tuples, Sets, Dictionaries, Sequences.

Comprehensions.

UNIT – IV:

Functions - Defining Functions, Calling Functions, Passing Arguments, Keyword Arguments,

Default Arguments, Variable-length arguments, Anonymous Functions, Fruitful

Functions(Function Returning Values), Scope of the Variables in a Function - Global and Local

Variables.

Modules: Creating modules, import statement, from. Import statement, name spacing,

Python packages, Introduction to PIP, Installing Packages via PIP, Using Python Packages

UNIT – V:

Object Oriented Programming OOP in Python: Classes, 'self variable', Methods, Constructor

Method, Inheritance, Overriding Methods, Datahiding,

Error and Exceptions: Difference between an error and Exception, Handling Exception, try

except block, Raising Exceptions, User Defined Exceptions

II Year - I Semester
L T P C

4 0 0 3

UNIT – VI:

Brief Tour of the Standard Library - Operating System Interface - String Pattern Matching,

Mathematics, Internet Access, Dates and Times, Data Compression, Multithreading, GUI

Programming, Turtle Graphics

Testing: Why testing is required ?, Basic concepts of testing, Unit testing in Python, Writing

Test cases, Running Tests.

OUTCOMES:

• Making Software easily right out of the box.

• Experience with an interpreted Language.

• To build software for real needs.

• Prior Introduction to testing software

TEXT BOOKS

1. Python Programming: A Modern Approach, Vamsi Kurama, Pearson

2. Learning Python, Mark Lutz, Orielly

Reference Books:

1. Think Python, Allen Downey, Green Tea Press

2. Core Python Programming, W.Chun, Pearson.

3. Introduction to Python, Kenneth A. Lambert, Cengage

STATISTICS WITH R PROGRAMMING

OBJECTIVE:

After taking the course, students will be able to

• Use R for statistical programming, computation, graphics, and modeling,

• Write functions and use R in an efficient way,

• Fit some basic types of statistical models

• Use R in their own research,

• Be able to expand their knowledge of R on their own.

UNIT-I:

Introduction, How to run R, R Sessions and Functions, Basic Math, Variables, Data Types,

Vectors, Conclusion, Advanced Data Structures, Data Frames, Lists, Matrices, Arrays, Classes.

 UNIT-II:

R Programming Structures, Control Statements, Loops, - Looping Over Nonvector Sets,- If-Else,

Arithmetic and Boolean Operators and values, Default Values for Argument, Return Values,

Deciding Whether to explicitly call return- Returning Complex Objects, Functions are Objective,

No Pointers in R, Recursion, A Quicksort Implementation-Extended Extended Example: A

Binary Search Tree.

 UNIT-III:

Doing Math and Simulation in R, Math Function, Extended Example Calculating Probability-

Cumulative Sums and Products-Minima and Maxima- Calculus, Functions Fir Statistical

Distribution, Sorting, Linear Algebra Operation on Vectors and Matrices, Extended Example:

Vector cross Product- Extended Example: Finding Stationary Distribution of Markov Chains, Set

Operation, Input /out put, Accessing the Keyboard and Monitor, Reading and writer Files,

 UNIT-IV:

Graphics, Creating Graphs, The Workhorse of R Base Graphics, the plot() Function –

Customizing Graphs, Saving Graphs to Files.

UNIT-V:

Probability Distributions, Normal Distribution- Binomial Distribution- Poisson Distributions

Other Distribution, Basic Statistics, Correlation and Covariance, T-Tests,-ANOVA.

II Year - I Semester
L T P C

4 0 0 3

UNIT-VI:

Linear Models, Simple Linear Regression, -Multiple Regression Generalized Linear Models,

Logistic Regression, - Poisson Regression- other Generalized Linear Models-Survival Analysis,

Nonlinear Models, Splines- Decision- Random Forests,

OUTCOMES:

At the end of this course, students will be able to:

• List motivation for learning a programming language

• Access online resources for R and import new function packages into the R workspace

• Import, review, manipulate and summarize data-sets in R

• Explore data-sets to create testable hypotheses and identify appropriate statistical tests

• Perform appropriate statistical tests using R Create and edit visualizations with

TEXT BOOKS:

1) The Art of R Programming, Norman Matloff, Cengage Learning

2) R for Everyone, Lander, Pearson

REFERENCE BOOKS:

1) R Cookbook, PaulTeetor, Oreilly.

2) R in Action,Rob Kabacoff, Manning

DATASTRUCTURES THROUGH C++ LAB

OBJECTIVES:

• To develop skills to design and analyze simple linear and non linear data structures

• To Strengthen the ability to identify and apply the suitable data structure for the given
real world problem

• To Gain knowledge in practical applications of data structures

List of Experiments:

1. Implementation of Singly linked list.

 2. Implementation of Doubly linked list.

3. Implementation of Multistack in a Single Array.

4. Implementation of Circular Queue

5. Implementation of Binary Search trees.

6. Implementation of Hash table.

7. Implementation of Heaps.

 8. Implementation of Breadth First Search Techniques.

 9. Implementation of Depth First Search Techniques.

10. Implementation of Prim’s Algorithm.

 11. Implementation of Dijkstra’s Algorithm.

12. Implementation of Kruskal’s Algorithm

13. Implementation of MergeSort

14. Implementation of Quick Sort

 15. Implementation of Data Searching using divide and conquer technique

OUTCOMES:

 At the end of this lab session, the student will

• Be able to design and analyze the time and space efficiency of the data structure

• Be capable to identity the appropriate data structure for given problem

Have practical knowledge on the application of data structures

II Year - I Semester
L T P C

0 0 3 2

PYTHON PROGRAMMING LAB

Exercise 1 - Basics

a) Running instructions in Interactive interpreter and a Python Script
b) Write a program to purposefully raise Indentation Error and Correct it

Exercise 2 - Operations

a) Write a program to compute distance between two points taking input from the user

(Pythagorean Theorem)
b) Write a program add.py that takes 2 numbers as command line arguments and prints its sum.

Exercise - 3 Control Flow

a) Write a Program for checking whether the given number is a even number or not.

b) Using a for loop, write a program that prints out the decimal equivalents of 1/2, 1/3, 1/4, . . . ,

1/10

c) Write a program using a for loop that loops over a sequence. What is sequence ?

d) Write a program using a while loop that asks the user for a number, and prints a countdown

from that number to zero.

Exercise 4 - Control Flow - Continued

a) Find the sum of all the primes below two million.

Each new term in the Fibonacci sequence is generated by adding the previous two terms. By
starting with 1 and 2, the first 10 terms will be:

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

b) By considering the terms in the Fibonacci sequence whose values do not exceed four million,

find the sum of the even-valued terms.

Exercise - 5 - DS

a) Write a program to count the numbers of characters in the string and store them in a

dictionary data structure
b) Write a program to use split and join methods in the string and trace a birthday with a

dictionary data structure.

II Year - I Semester
L T P C

0 0 3 2

Exercise - 6 DS - Continued

a) Write a program combine_lists that combines these lists into a dictionary.

b) Write a program to count frequency of characters in a given file. Can you use character

frequency to tell whether the given file is a Python program file, C program file or a text file?

Exercise - 7 Files

a) Write a program to print each line of a file in reverse order.
b) Write a program to compute the number of characters, words and lines in a file.

Exercise - 8 Functions

a) Write a function ball_collide that takes two balls as parameters and computes if they are

colliding. Your function should return a Boolean representing whether or not the balls are

colliding.

Hint: Represent a ball on a plane as a tuple of (x, y, r), r being the radius

If (distance between two balls centers) <= (sum of their radii) then (they are colliding)

b) Find mean, median, mode for the given set of numbers in a list.

Exercise - 9 Functions - Continued

a) Write a function nearly_equal to test whether two strings are nearly equal. Two strings a and b

are nearly equal when a can be generated by a single mutation on b.
b) Write a function dups to find all duplicates in the list.
c) Write a function unique to find all the unique elements of a list.

Exercise - 10 - Functions - Problem Solving

a) Write a function cumulative_product to compute cumulative product of a list of numbers.
b) Write a function reverse to reverse a list. Without using the reverse function.
c) Write function to compute gcd, lcm of two numbers. Each function shouldn’t exceed one line.

Exercise 11 - Multi-D Lists

a) Write a program that defines a matrix and prints
b) Write a program to perform addition of two square matrices
c) Write a program to perform multiplication of two square matrices

Exercise - 12 - Modules

a) Install packages requests, flask and explore them. using (pip)
b) Write a script that imports requests and fetch content from the page. Eg. (Wiki)
c) Write a simple script that serves a simple HTTPResponse and a simple HTML Page

Exercise - 13 OOP

a) Class variables and instance variable
 i) Robot
 ii) ATM Machine

Exercise - 14 GUI, Graphics

1. Write a GUI for an Expression
2. Write a program to implement

Exercise - 15 - Testing

a) Write a test-case to check the

even numbers
b) Write a test-case to check the

Exercise - 16 - Advanced

a) Build any one classical data
b) Write a program to solve knapsack

variable and illustration of the self variable

Expression Calculator using tk
implement the following figures using turtle

 function even_numbers which return True on passing

 function reverse_string which returns the reversed

data structure.
knapsack problem.

passing a list of all

reversed string

